TOPICS
Search

Fractional Derivative


The fractional derivative of f(t) of order mu>0 (if it exists) can be defined in terms of the fractional integral D^(-nu)f(t) as

 D^muf(t)=D^m[D^(-(m-mu))f(t)],
(1)

where m is an integer >=[mu], where [x] is the ceiling function. The semiderivative corresponds to mu=1/2.

The fractional derivative of the function t^lambda is given by

D^mut^lambda=D^m[D^(-(m-mu))t^lambda]
(2)
=D^m[(Gamma(lambda+1))/(Gamma(lambda+m-mu+1))t^(lambda+m-mu)]
(3)
=(Gamma(lambda+1)(lambda-mu+m)(lambda-mu+m-1)...(lambda-mu+1))/(Gamma(1+m+lambda-mu))t^(lambda-mu)
(4)
=(Gamma(lambda+1)(1+lambda-mu)_m)/(Gamma(1+m+lambda-mu))t^(lambda-mu)
(5)
=(Gamma(lambda+1))/(Gamma(lambda-mu+1))t^(lambda-mu)
(6)

for lambda>-1,mu>0. The fractional derivative of the constant function f(t)=c is then given by

D^muc=clim_(lambda->0)(Gamma(lambda+1))/(Gamma(lambda-mu+1))t^(lambda-mu)
(7)
=(ct^(-mu))/(Gamma(1-mu)).
(8)

The fractional derivate of the Et-function is given by

 D^rhoE_t(nu,a)=E_t(nu-rho,a)
(9)

for nu>0,rho!=0.

It is always true that, for mu,nu>0,

 D^(-mu)D^(-nu)=D^(-(mu+nu)),
(10)

but not always true that

 D^muD^nu=D^(mu+nu).
(11)

Fractional derivatives are implemented in the Wolfram Language as FractionalD.

A fractional integral can also be similarly defined. The study of fractional derivatives and integrals is called fractional calculus.


See also

Fractional Calculus, Fractional Differential Equation, 'Fractional Integral, Semiderivative

Explore with Wolfram|Alpha

References

Kilbas, A. A.; Srivastava, H. M.; and Trujiilo, J. J. Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier, 2006.Love, E. R. "Fractional Derivatives of Imaginary Order." J. London Math. Soc. 3, 241-259, 1971.Miller, K. S. "Derivatives of Noninteger Order." Math. Mag. 68, 183-192, 1995.Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993.

Referenced on Wolfram|Alpha

Fractional Derivative

Cite this as:

Weisstein, Eric W. "Fractional Derivative." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FractionalDerivative.html

Subject classifications