TOPICS
Search

Ferguson-Forcade Algorithm


The first practical algorithm for determining if there exist integers a_i for given real numbers x_i such that

 a_1x_1+a_2x_2+...+a_nx_n=0,

or else establish bounds within which no such integer relation can exist (Ferguson and Forcade 1979). The algorithm therefore became the first viable generalization of the Euclidean algorithm to n>=3 variables.

A nonrecursive variant of the original algorithm was subsequently devised by Ferguson (1987). The Ferguson-Forcade algorithm has been shown to be polynomial time in the logarithm in the size of a smallest relation, but has not been shown to be polynomial in dimension (Ferguson et al. 1999).


See also

Constant Problem, Euclidean Algorithm, Integer Relation, PSLQ Algorithm

Explore with Wolfram|Alpha

References

Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving pi, e, and Euler's Constant." Math. Comput. 50, 275-281, 1988.Bergman, G. "Notes on Ferguson and Forcade's Generalized Euclidean Algorithm." Unpublished notes. Berkeley, CA: University of California at Berkeley, Nov. 1980.Ferguson, H. R. P. "A Short Proof of the Existence of Vector Euclidean Algorithms." Proc. Amer. Math. Soc. 97, 8-10, 1986.Ferguson, H. R. P. "A Non-Inductive GL(n,Z) Algorithm that Constructs Linear Relations for n Z-Linearly Dependent Real Numbers." J. Algorithms 8, 131-145, 1987.Ferguson, H. R. P.; Bailey, D. H.; and Arno, S. "Analysis of PSLQ, An Integer Relation Finding Algorithm." Math. Comput. 68, 351-369, 1999.Ferguson, H. R. P. and Forcade, R. W. "Generalization of the Euclidean Algorithm for Real Numbers to All Dimensions Higher than Two." Bull. Amer. Math. Soc. 1, 912-914, 1979.Ferguson, H. R. P. and Forcade, R. W. "Multidimensional Euclidean Algorithms." J. reine angew. Math. 334, 171-181, 1982.Gibbs, W. W. "A Digital Slice of Pi. The New Way to do Pure Math: Experimentally." Sci. Amer. 288, 23-24, May 2003.

Referenced on Wolfram|Alpha

Ferguson-Forcade Algorithm

Cite this as:

Weisstein, Eric W. "Ferguson-Forcade Algorithm." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Ferguson-ForcadeAlgorithm.html

Subject classifications