TOPICS
Search

Edgeworth Series


Let a distribution to be approximated be the distribution F_n of standardized sums

 Y_n=(sum_(i=1)^(n)(X_i-X^_))/(sqrt(sum_(i=1)^(n)sigma_X^2)).
(1)

In the Charlier series, take the component random variables identically distributed with mean mu, variance sigma^2, and higher cumulants sigma^rlambda_r for r>=3. Also, take the developing function Psi(t) as the standard normal distribution function Phi(t), so we have

kappa_1-gamma_1=0
(2)
kappa_2-gamma_2=0
(3)
kappa_3-gamma_3=(lambda^r)/(n^(r/2-1)).
(4)

Then the Edgeworth series is obtained by collecting terms to obtain the asymptotic expansion of the characteristic function of the form

 f_n(t)=[1+sum_(r=1)^infty(P_r(it))/(n^(r/2))]e^(-t^2/2),
(5)

where P_r is a polynomial of degree 3r with coefficients depending on the cumulants of orders 3 to r+2. If the powers of Psi are interpreted as derivatives, then the distribution function expansion is given by

 F_n(x)=Psi(x)+sum_(r=1)^infty(P_r(-Phi(x)))/(n^(r/2))
(6)

(Wallace 1958). The first few terms of this expansion are then given by

 f(t)=Psi(t)-(lambda_3Psi^((3))(t))/(6sqrt(n)) 
 +1/n[(lambda_4Psi^((4))(t))/(24)+(lambda_3^2Psi^((6))(t))/(72)]+....
(7)

Cramér (1928) proved that this series is uniformly valid in t.


See also

Charlier Series, Cornish-Fisher Asymptotic Expansion

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 935, 1972.Charlier, C. V. L. "Über dir Darstellung willkürlicher Funktionen." Ark. Mat. Astr. och Fys. 2, No. 20, 1-35, 1906.Cramér, H. "On the Composition of Elementary Errors." Skand. Aktuarietidskr. 11, 13-74 and 141-180, 1928.Edgeworth, F. Y. "The Law of Error." Cambridge Philos. Soc. 20, 36-66 and 113-141, 1905.Esseen, C. G. "Fourier Analysis of Distribution Functions." Acta Math. 77, 1-125, 1945.Hsu, P. L. "The Approximate Distribution of the Mean and Variance of a Sample of Independent Variables." Ann. Math. Stat. 16, 1-29, 1945.Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 107-108, 1951.Wallace, D. L. "Asymptotic Approximations to Distributions." Ann. Math. Stat. 29, 635-654, 1958.

Referenced on Wolfram|Alpha

Edgeworth Series

Cite this as:

Weisstein, Eric W. "Edgeworth Series." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EdgeworthSeries.html

Subject classifications