The angle obtained by drawing the auxiliary circle of an ellipse with center and focus , and drawing a line perpendicular to the semimajor axis and intersecting it at . The angle is then defined as illustrated above. Then for an ellipse with eccentricity ,
(1)
|
But the distance is also given in terms of the distance from the focus and the supplement of the angle from the semimajor axis by
(2)
|
Equating these two expressions gives
(3)
|
which can be solved for to obtain
(4)
|
To get in terms of , plug (◇) into the equation of the ellipse
(5)
|
Rearranging,
(6)
|
and plugging in (◇) then gives
(7)
| |||
(8)
|
Solving for gives
(9)
|
so differentiating yields the result
(10)
|
The eccentric anomaly is a very useful concept in orbital mechanics, where it is related to the so-called mean anomaly by Kepler's equation
(11)
|
can also be interpreted as the area of the shaded region in the above figure (Finch 2003).