All the propositions in projective geometry  occur in dual pairs which have the property that, starting from either proposition
 of a pair, the other can be immediately inferred by interchanging the parts played
 by the words "point" and "line." The principle was enunciated
 by Gergonne (1825-1826; Cremona 1960, p. x). A similar duality exists for reciprocation  as first enunciated by Poncelet (1817-1818;
 Casey 1893; Lachlan 1893; Cremona 1960, p. x).
Examples of dual geometric objects include Brianchon's theorem  and Pascal's theorem , the 15 Plücker
 lines  and 15 Salmon points , the 20 Cayley
 lines  and 20 Steiner points , the 60 Pascal
 lines  and 60 Kirkman points , dual
 polyhedra , and dual tessellations .
Propositions which are equivalent to their duals are said to be self-dual .
 
See also Brianchon's Theorem , 
Conservation of Number Principle , 
Continuity Principle ,
 
Desargues' Theorem , 
Dual
 Polyhedron , 
Duality Law , 
Pappus's
 Hexagon Theorem , 
Pascal's Theorem , 
Projective
 Geometry , 
Reciprocal , 
Reciprocation ,
 
Self-Dual 
Explore with Wolfram|Alpha 
References Casey, J. "Theory of Duality and Reciprocal Polars." Ch. 13 in A
 Treatise on the Analytical Geometry of the Point, Line, Circle, and Conic Sections,
 Containing an Account of Its Most Recent Extensions, with Numerous Examples, 2nd
 ed., rev. enl.   Dublin: Hodges, Figgis, & Co., pp. 382-392, 1893. Cremona,
 L. Elements
 of Projective Geometry, 3rd ed.   New York: Dover, 1960. Durell,
 C. V. Modern
 Geometry: The Straight Line and Circle.   London: Macmillan, p. 78, 1928. Gergonne,
 J. D. "Philosophie mathématique. Considérations philosophiques
 sur les élémens de la science de l'étendue." Ann. Math.  16 ,
 209-231, 1825-1826. Graustein, W. C. Introduction
 to Higher Geometry.   New York: Macmillan, pp. 26-27 and 41-43, 1930. Lachlan,
 R. "The Principle of Duality." §7 and 284-299 in An
 Elementary Treatise on Modern Pure Geometry.   London: Macmillian, pp. 3-4
 and 174-182, 1893. Ogilvy, C. S. Excursions
 in Geometry.   New York: Dover, pp. 107-110, 1990. Poncelet,
 J.-V. "Questions résolues. Solution du dernier des deux problémes
 de géométrie proposés à la page 36 de ce volume; suivie
 d'une théorie des pôlaires réciproques, et de réflexions
 sur l'élimination." Ann. Math.  8 , 201-232, 1817-1818. Referenced
 on Wolfram|Alpha Duality Principle 
Cite this as: 
Weisstein, Eric W.  "Duality Principle."
From MathWorld  --A Wolfram Resource. https://mathworld.wolfram.com/DualityPrinciple.html 
Subject classifications