Continuum Hypothesis

The proposal originally made by Georg Cantor that there is no infinite set with a cardinal number between that of the "small" infinite set of integers aleph_0 and the "large" infinite set of real numbers c (the "continuum"). Symbolically, the continuum hypothesis is that aleph_1=c. Problem 1a of Hilbert's problems asks if the continuum hypothesis is true.

Gödel showed that no contradiction would arise if the continuum hypothesis were added to conventional Zermelo-Fraenkel set theory. However, using a technique called forcing, Paul Cohen (1963, 1964) proved that no contradiction would arise if the negation of the continuum hypothesis was added to set theory. Together, Gödel's and Cohen's results established that the validity of the continuum hypothesis depends on the version of set theory being used, and is therefore undecidable (assuming the Zermelo-Fraenkel axioms together with the axiom of choice).

Conway and Guy (1996, p. 282) recount a generalized version of the continuum hypothesis originally due to Hausdorff in 1908 which is also undecidable: is 2^(aleph_alpha)=aleph_(alpha+1) for every alpha? The continuum hypothesis follows from generalized continuum hypothesis, so ZF+GCH|-CH.

Woodin (2001ab, 2002) formulated a new plausible "axiom" whose adoption (in addition to the Zermelo-Fraenkel axioms and axiom of choice) would imply that the continuum hypothesis is false. Since set theoreticians have felt for some time that the Continuum Hypothesis should be false, if Woodin's axiom proves to be particularly elegant, useful, or intuitive, it may catch on. It is interesting to compare this to a situation with Euclid's parallel postulate more than 300 years ago, when Wallis proposed an additional axiom that would imply the parallel postulate (Greenberg 1994, pp. 152-153).

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.