TOPICS
Search

Conchoid of de Sluze


ConchoidofdeSluzeCurves
ConchoidofdeSluze

The conchoid of de Sluze is the cubic curve first constructed by René de Sluze in 1662. It is given by the implicit equation

 (x-1)(x^2+y^2)=ax^2,
(1)

or the polar equation

 r=sectheta+acostheta.
(2)

This can be written in parametric form as

x=(sect+acost)cost
(3)
y=(sect+acost)sint.
(4)

The conchoid of de Sluze has a singular point at the origin which is a crunode for a<-1, a cusp for a=-1, and an acnode for a>-1.

It has curvature and tangential angle

kappa(t)=(2a(4+a-3sec^2t))/([a(4+a)-2asec^2t+sec^4t]^(3/2))
(5)
phi(t)=2t-tan^(-1)[(2sin(2t))/(2+(a+2)cos(2t))].
(6)

The curve has a loop if a<-1, in which case the loop is swept out by -sec^(-1)sqrt(-a)<=t<=sec^(-1)sqrt(-a). The area of the loop is

 A_(loop)=1/2[(2-a)sqrt(-a-1)+a(4+a)sec^(-1)(sqrt(-a))].
(7)

See also

Conchoid, Conchoid of Nicomedes

Explore with Wolfram|Alpha

References

MacTutor History of Mathematics Archive. "Conchoid of de Sluze." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Conchoidsl.html.Smith, D. E. History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, p. 327, 1958.Wassenaar, J. "Conchoid of de Sluze." http://www.2dcurves.com/cubic/cubiccs.html.

Cite this as:

Weisstein, Eric W. "Conchoid of de Sluze." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ConchoidofdeSluze.html

Subject classifications