One of the Zermelo-Fraenkel axioms, also known as the axiom of regularity (Rubin 1967, Suppes 1972). In the formal language
of set theory, it states that
where
means implies, means exists, means AND, denotes intersection,
and
is the empty set (Mendelson 1997, p. 288). More
descriptively, "every nonempty set is disjoint from one of its elements."
The axiom of foundation can also be stated as "A set contains no infinitely descending (membership) sequence," or "A set contains a (membership) minimal element," i.e., there is an element of the set that shares no member with the set (Ciesielski 1997, p. 37; Moore 1982, p. 269; Rubin 1967, p. 81; Suppes 1972, p. 53).
Mendelson (1958) proved that the equivalence of these two statements necessarily relies on the axiom of choice. The dual expression
is called -induction,
and is equivalent to the axiom itself (Itô 1986, p. 147).
Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University
Press, 1997.Dauben, J. W. Georg
Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton
University Press, 1990.Itô, K. (Ed.). "Zermelo-Fraenkel Set
Theory." §33B in Encyclopedic
Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press,
pp. 146-148, 1986.Mendelson, E. "The Axiom of Fundierung and
the Axiom of Choice." Archiv für math. Logik und Grundlagenfors.4,
67-70, 1958.Mendelson, E. Introduction
to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.Mirimanoff,
D. "Les antinomies de Russell et de Burali-Forti et le problème fondamental
de la théorie des ensembles." Enseign. math.19, 37-52,
1917.Moore, G. H. Zermelo's
Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag,
1982.Neumann, J. von. "Über eine Widerspruchsfreiheitsfrage
in der axiomatischen Mengenlehre." J. reine angew. Math.160,
227-241, 1929.Neumann, J. von. "Eine Axiomatisierung der Mengenlehre."
J. reine angew. Math.154, 219-240, 1925.Rubin, J. E.
Set
Theory for the Mathematician. New York: Holden-Day, 1967.Suppes,
P. Axiomatic
Set Theory. New York: Dover, 1972.Zermelo, E. "Über
Grenzzahlen und Mengenbereiche." Fund. Math.16, 29-47, 1930.